SOLUTION OF A DRYING PROBLEM FOR A
COLLOIDAL POROUS MATERIAL WITH A
MOVING EVAPORATION BOUNDARY

D. V. Redozubov, UDC 66.047.7

Closed solutions are derived for linear differential equations for one-dimensional drying
with an evaporation boundary moving in accordance with gvt.

1. Lykov [1]has given an analytical formulation for the drying in this case with a moving evaporation
boundary. He also gave an approximate solution for the simplified case of drying with a linearly moving
evaporation boundary,

We use Lykov's analytical scheme to formulate the one-dimensional case of drying with a moving
evaporation boundary (x = y(t)) for a semiinfinite space; the critical water content Uy is considered as con-
stant at the boundary of the evaporation zone,

The problem is then that of solving a system of equations for the evaporation zone
89, 026, U,
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for the moist zone.
The following are the boundary and initial conditions:
8,0, t) =8 =const, U,(0, t) =U; = const, (1.5)
8, (x, 0) =0 =const, U,(x, 0)=Us = const. (1.6)

At the moving boundary, i.e., at x =y(t), we have equality in the temperature and water contents and
also equalities in the water and heat fluxes, i.e.,

biw®, =000, 0, U.® H=Uud, 1), x.7)

U, 98, > ' ( U, 26,
o, AL T R 2 g, -0 :
( o Ty P TRy >x=ym 48
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A]l the coefficients in the equation are considered as constant, The physical meanings of these coef-
ficients are those given by Lykov [1] on the assumption that the heat and mass transfer involve vapor and
water in the humid and evaporation zones,
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2. We seek partic_ular solutions 6;(x, t, p) and Uy(x, t, p) to (1.1) and (1.2) in the form

0:(x, ¢, p) = Oy (x, p)exp(pt). (2.1)
and
Uy (x, t, p) = Uy (%, p)exp(pt). (2.2)
We substitute (2.1) and (2.2) into (1.1) and (1.2) to get
a0 a2
POy (%, p) = ay dxl; ealeT 'dx211 (2.3)
and
au d*0
pUn (x, p) = ay dlel T %y dxlzl (2.4)
If we put
d? .
8. (%, Py =— o0y e Vi p), (2.5)
and
. dZ
U lx, p)= (O‘n i —p ) Vix, p), (2.6)

where V(x, p) is a2 new function to be determined, then (2.3) is satisfied identically, while from (2.4) we get

{(alrdf—;——-—p)(am —%——p) ~—ocmoc22——£:T] Vi, p) =0 (2.7)
As (2.7) is a uniform equation of fourth order, the characteristic equation is

(03 %gy ~— Qyyyg) 8* — P (g + Ogy) &+ P2 =0 (2.8)

and this has four roots:
Sp=tnVpads,=+rnVp, (2.9)

where
Iyp = l/ (0tyy + 0igy) + V (%H‘ Olg)® — 4 (0hg30y1 — Clga%yo) (2.10)
’ 2 (041 Qlyy — Cyplyo)

If ooy — a0y > 0, all the roots are real; if on the other hand gy iy — @y, 0y < 0, then all the roots
are imaginary. We consider the case of real roots, which corresponds to the physical conditions such that

Q1 > oy and oy > oy
Then the general Eq. (2.7) will take the form
V(x, p)=Cy(p)exp(rx v p) + Cy(p) exp (— rx Vp) - Cy(p) exp (ryx V'p) + Cy (p)exp(—rx Vp),  (2.11)
where Cj(p) are arbitrary functions of parameter p.

We substitute our result for V(x, p) into (2.5) and (2.6) to get

01 (%, p) = — @y t2pFL (X, P, 1)) — ayr3pFy (%, p, 13) (2.12)
and
Up (6 p) =p o —1)Fi(x, p, r) +plani— 1) F (% p, 1o, (2.13)
where ‘
Fi(e, p, ) =Ci(p)exp (rixVp) 4 Croa (P exp (—rixVp) 219
(i=1,2 andj=i for i=1and j=1i--1 for i:=2)
Similarly we find the particular solutions 8,(x, t, p) = 8,(x, p)exp (pt) and Uy(x, t, p) = Uy(x,
p)exp(pt); the functions f,,(x, p) and Uy (x, p) take the form
By, (%, P) = — BuoRiPFs (%, Py ki) — PuokpFo (%, p, ko) (2.15)
and _ )
Up¥, p) =pBuki— 1) Fs(x, p, k) -+ p Bukl—1)F (%, p, k), 42.16)
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where

Fi (%, p, ki) =C;(p)exp (ksx v/ p) + Cpa (P)exp (— ki1 p)

. C . S . (2.17)
(i=3 4andj=i4+2fr i =3andj=i{-+3 for i=4)

and

k1,z _ l//-(ﬁu + B = V(ﬁu + Bor)® — 4 (Buabor — Probon) (2.18)
2 (511321 - ﬁmﬁzz)

provided that B89 ~B8y9899 > 0.

3. The general solutions fo system (1.1)-(1.4) will be sought in the form of the following integrals:

G-Lioe

1
8, (r, f)z—fj 0,(x pexpptidp  (I=1, 2), (3.1)
2
G—ix
and
1 O4ion
Uit =—— [ Uuts peponap @ =1, 2. (3.2)
Oiw

Each of the integrals in (3.1) and (3.2) consists of the sum of four integrals; for instance, the inte-
grals for 6,(x, t) take the form

gtiw : - gtim
. I R G - ‘ _
8; (x, 1) = — a1} {—é;; \ exp (pt =~ 11X/ p) pC, (p) dp - S exp (pt — ryx )/ p) pCy (p) dp} — o2
L& i J i i
1 (‘;‘Lw { a-l-{ o
W | — exp{pf - r,xvV )pCs (P dp -~ —— exp (pf — r,x 1/ mpC dpl. .
[m. \ plpt = rvy ppCs ) dp - —— 5 p (pt — 1y py pCy (P) p} (3.3)
g—ix O—i®

The calculations are considerably simplified if the arbitrary functions C; (p) forj=1, 2, 3, 4, 5. 7
are put as

C(p) = —= (3.4)
and for j = 6 and 8
Ciip) = — =1 (3.5)

where Cj are arbitrary constants,

Also, (1.3) and (1.4) are homogeneous equations, so any constant will be a solution to them; bearing
this in mind, we can transform the integrals containing the constants C, and C; in the form C 1/p—
exp (-kix'fp)/p with i=1forj=6andi=2forj=8.

Then these values of Cj(p) cause the integrals in (3.1) and (3.2) to take the values

+ rit
o , TV
erfe | = ’f,a‘) =1 —erf (,; rix‘j =1— —2_— e “do, (3.8)
2T 2, 1 }
0
kix kX
eric i _j — I—erf i _) 3.7
( 2yt < 1t @7
and
kix
k 2 2LZ
X 2
erf L _) = — % d [ =1 . 3.8
r(?]/t/ 33 o (i , 2) (3.8
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These values for the above integrals give the following form to the general solutions:

rx rx
8 (x, ) = = P, ( 2;/? ) — 013D, (-——2 ;/{) , (3.9)
S kyx kox
0, (5, 1) = — Bighiepy 2 )— o 1
2( ) 512 13 \ 2}/ ﬁlz 2 F (3 0)
5 r{Xx
Uy (%, ) = (g1 — 1) Py ( 211/?) O‘11’ — 1) b, (3.11)
and
Uutr, ) = (Bt — 1) 0o+ gt — 1 0 (F2), (3.12)
! 2 2Vt
where
rx X ) . L f rx
@, ( 21/ \} -—C.erfc( e Merfc( Vfﬁ)
| (L=1 2,and =i for i==1 and]_w-]—l for i=2),
kX kx kix
#\ ¢, m(~ * \ic, a% ,_)
(pl_( 2_V-t ) er " 2]/:é0) +1 2; { ;
(=3 4 andi=landn=1[+2 for [=3; for =4 i=2 andn=1-"3)
4, To find the arbitrary consténts Cj from the boundary conditions of (1.5)'we have two equations:
0‘12"% (o ’1" C,) —~ %f'_a’ (C3 +C) = —8 (4.1)
and
(o273 — INCy - Gy + (i — (G, ‘:"»Cﬁ =—Ug 4.2)
and from the initial conditions of (1.6) we get two further equations:
Bisk} (2C5 + Co) -+ Bro} (2C; + Cy) = — 8 (4.3)
and
(Buik? — 1)(2C; + Cy) + (Buakl — 1)(2C; -+ C) =V 4.9

We get the other four equations for the arbitrary constants from the four boundary conditions at the
mobile evaporation boundary; however, substitution of (3.9)-(3.12) into (1.7)-(1.9) gives algebraic equations
for the Cj only if the boundary moves in accordance with

x=ylt)y=p VT, (4.5)
where 8 is an arbitrary constant.

This law for the boundary gives us from (1.7)~(1.9) the following four equations:

] Y S S
— iy (<) — i, () + putien (o) 4 i (2 ) =0, (4.6
. ‘ v .

eurt— 00 () + @0 () — bur —n ey (5 - e —ve () —0 @
Al (Cl - 2) + Az (Ca - C4) - As (C5 ":‘ s) —A-l (C7 + Ca) =0 (4‘8)

and '
Bl V(Cl — z)‘ + Bz (Ca - C4) “‘Bs (C5 4 Ce) + B4 (Cv -+ Ce) =0, (4-9)

where

2p2 )
A= (10 (@ fF — 1) — oy 8,77 exp (——- i ) (i=1,2);
. . |
A= 12,84 (ﬁuk%—- 1)— ﬁmﬁzzka;] exp (_“ -lg_) (=1 2)

‘ . . 202 .
B; = [r30y, (V40 — M) — V1anT: (@4s73 — Dl exp (——%—) (i=1,2
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and

B, = [k%m (Ag — VaPg) + VoPark (511k3 — D] exp (— %ﬁf—) =12,

/

E quations (4.1)-(4.4) and (4.6)-(4.9) constitute a system of eight inhomogeneous equations, which are
to be solved for the C;. These C; are dependent also on 3; we get the equation for g from the condition that
U, (BVt, t) = U, at the mobile boundary.

We substitute x = gVt into (3.11) and use U, (8vt, t) = U, to get

Up= (o} — 1) &; (%‘) + a3 — @, (--29—) (4.10)

to determine 8.

NOTATION

6(x, t) and Oy(x, t) are the temperatures in the evaporation zone and in the humid zone;
Uy(x, t) and Uy(x, t) are the humidities in the evaporation zone and in the humid zone;
yit) = gVt is the position of the evaporation boundary.
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